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Abstract

Prior laboratory experiments have studied general equilibrium economies constructed from “in-

duced preferences” for artificial goods. We introduce new methods that allow us to study

economies constructed instead from subjects’ actual, “homegrown” preferences. Our subjects

reveal their preferences by choosing portfolios of Arrow securities from budget lines through fixed

endowments for a series of prices. We then construct several different economies by sorting sub-

jects according to their revealed preferences. The constructed economies exhibit a wide range

of predicted outcomes, where predictions are competitive general equilibria given the revealed

preferences. Perhaps surprisingly, in every one of our markets the predicted excess demand is

well-behaved, and avoids the pathologies highlighted in the Sonnenschein-Mantel-Debreu the-

orem. (The main reason seems to be heterogeneity in revealed preferences.) Actual trade in

the constructed economies using a tatonnement market institution closely tracks predictions in

most markets. The exceptions occur in economies with severe wealth effects that generate excess

demands that are flat relative to measured preference volatility.
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1 Introduction

By the 1970s it became clear that general equilibrium theory, at that time widely regarded as

the centerpiece of economics, suffers from two fundamental problems. First, as the Sonnenschein-

Mantel-Debreu theorem (SMD) [Sonnenschein, 1973, Mantel, 1974, Debreu, 1974] showed, even

very standard neoclassical preferences can aggregate to produce “pathological” economies, for which

competitive equilibrium is non-existent, or multiple, or dynamically unstable. Second, the theory

itself tells us very little about how, when and why markets should converge to competitive equilibria

even when they do exist. Jointly, these fundamental problems call into question the power of the

theory to predict and interpret observed market behavior.

In this paper we introduce new experimental methods that shed new empirical light on those

longstanding problems. Our contribution is to study laboratory economies that are built entirely

from the “homegrown” preferences that subjects bring with them into the lab. In the first phase

of our experiment, subjects partially reveal those preferences by choosing final allocations along

dozens of exogenously given budget lines generated by a grid of prices and a fixed initial endowment

of two goods (building on methods introduced in Choi, Fisman, Gale, and Kariv [2007]). Using

those revealed preferences, we construct economies by sorting the subjects into several distinct

groups, and for each economy we calculate aggregate excess demand at these grid prices. These

calculations require no parametric assumptions but still produce “revealed competitive equilibria”

(RCE) predicting behavior in each economy we construct. Using this approach, we can study for the

first time whether real preferences, in the aggregate, give rise to the sort of pathologies cautioned

by SMD. In the second phase of the experiment subjects trade under a tatonnement institution,

allowing us to compare actual market prices and allocations to the RCE predictions. The sorting

algorithms enable us to construct economies whose RCE predictions span a wide range of prices

and final allocations, enabling demanding tests of general equilibrium theory.

The extant experimental literature on general equilibrium, by contrast, relies on induced prefer-

ences. In such experiments (discussed in more detail below) subjects are endowed with portfolios of

fictional goods and given artificial preferences in the form of non-linear monetary reward functions

over their final portfolio (i.e. the portfolio they hold after trading in a market). Subjects are allowed

to trade goods using a market institution, and the payment functions and endowments generate

equilibrium predictions and stability properties that can be compared to the outcomes and dynam-

ics of this trade. While these methods have proven useful in answering important questions about

the equilibrating tendencies of markets, they can tell us little about how real preferences aggregate,
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since the preferences in such experiments are artificial. They offer no insight into whether aggre-

gates of actual preferences suffer from the sorts of pathologies highlighted in the SMD theorem,

and whether real preferences expressed in markets are sufficiently stable for markets to converge to

predictable equilibria.

Our new methods can be applied to any sort of preferences measurable in the lab. Here we

apply them to a class of preferences that is both of central importance to general equilibrium theory

and is simple to study in the lab: preferences over risky lotteries. In each period of Phase 1 of our

experiment, we endow subjects with an initial portfolio of Arrow securities,1 (x, y): half of subjects

are randomly assigned as x-types, endowed only with security x throughout the experiment, and

the other half are y-types, endowed only with security y. We then provide subjects with budget

lines generated by their endowments and a variety of prices in a fixed but “scrambled” sequence,

and ask subjects to choose final portfolios on each of these lines. In Phase 2, we use subjects’ raw

choices from Phase 1 to classify each of them as either a “high convexity” preference type (called

Hx or Hy depending on their endowment type) or a “low convexity” preference type (Lx or Ly).

We then construct a series of experimental economies based on permutations of these types: HxHy

markets have only high convexity subjects, LxLy markets low convexity subjects and LxHy and

HxLy have the indicated mixes. Finally, subjects trade securities in these economies using the

classical tatonnement market institution.

Preferences measured in Phase 1 allow us to make distinct equilibrium predictions for each of

these economies. Crucially, we do not need to impose any parametric assumptions on preferences or

choose an error structure for estimation to do this. Indeed, the experiment is designed to allow us

to make general equilibrium predictions using only subjects’ raw Phase 1 choices. Treating security

y as the numeraire, we can compute for each Phase 2 economy the excess demand for security x

revealed at each price seen in Phase 1 simply by summing the Phase 1 demands net of endowment

over the economy’s participants. The roots of these revealed excess demand functions for Phase

2 economies are the “revealed competitive equilibrium” (RCE) predictions. Moreover, because

we observe subjects’ choices twice at each price in Phase 1, we can estimate volatility in each

participant’s revealed preferences, and use this measure to predict whether aggregate preferences

are volatile enough to interfere with equilibrating dynamics. Thus we are able to classify each RCE

prediction, ex ante, as “fragile” or “robust” depending on how volatile aggregate preferences are

relative to the slope of excess demand outside of equilibrium.

1Arrow security i pays one unit of consumption in state i and zero in all other states, so that holding one unit

of each security type results in risk-free consumption of one unit. In our experiment we have two equally probable

states and an Arrow security for each of them.
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By constructing economies based on revealed convexities in preferences, we are able to use

subjects’ own preferences as treatment instruments to test general equilibrium comparative statics

predictions. First, given our asymmetric aggregate endowments (total endowed y is less than total

endowed x), we predict that more convex HxHy economies will generate lower prices than less

convex LxLy economies. Second, we predict that due to stronger wealth effects, the equilibrating

tendencies will be weaker in HxHy economies and so RCE will be more fragile than in LxLy

economies

Individual preferences measured in Phase 1 are similar to those from the most closely related

prior work (e.g. Choi, Fisman, Gale, and Kariv [2007]): a minority of subjects exhibit demand

consistent with risk neutral preferences, most subjects display demands broadly consistent with

risk aversion, and a large number of them seem to use distinctly non-neoclassical heuristics. More

importantly for our purposes, we can study what these preferences imply for general equilibrium

outcomes. At the individual level, preferences seem to confirm the worst suspicions raised by the

SMD result: randomly pairing subjects into replica economies, we observe pathologies such as

multiple equilibria or non-existent equilibrium nearly half the time. Remarkably, however, these

pathologies disappear as economies become even moderately larger. In the 12-person economies

we actually construct and study in the experiment, equilibrium exists and is unique in every single

case.

Market-level results in Phase 2 are broadly supportive of general equilibrium predictions, com-

parative statics and classical dynamics. Prices usually converge to the RCE, and price levels

universally obey comparative statics in each session and partition of subjects. As predicted, HxHy

prices are lower in each session than LxLy prices. Moreover, prices virtually always converge to

RCE pre-classified as robust, but do so less often in economies pre-classified as fragile. Thus even

failures to equilibrate are predictable based on measured characteristics of Phase 1 behavior.

We close the paper by exploring the disconnect between the often poorly behaved demands of our

individual subjects and the relatively well-behaved aggregate excess demands in our experimental

economies. Our data indicate that economies become better behaved as they grow larger due

to heterogeneity in individual preferences. That conclusion is based on simulations in which we

sample data from our individual subjects to construct thousands of counterfactual economies of

various sizes. In “replica” economies (those consisting of only one sampled agent on each side of the

market), where heterogeneity is low, SMD pathologies – non-existence, multiplicity, instability –

occur 40% of the time. By contrast, in economies of the size studied in our experiment (12 subjects)

where heterogeneity is significantly larger, pathologies occur only 15% of the time. When we reach
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economies the size of our whole dataset, equilibrium exists and is unique and well behaved.

The simulation results support the theoretical conjecture [e.g., see Grandmont, 1987, 1992,

Hildenbrand, 1994, Giraud and Quah, 2003, Hildenbrand and Kneip, 2005] that preference hetero-

geneity in the population can protect economies against SMD-style pathologies. Our simulation

exercise indicates that preferences in our subject population are indeed sufficiently heterogeneous

to tame aggregate excess demands as economies grow large.

A second simulation exercise shows that aggregate volatility, which can weaken equilibration,

diminishes as markets grow large. Equilibria are fragile in 70% of replica economies, but only

in 40% of 12 person economies and 12% of 60 person economies. Overall, due to heterogeneity

and cancelling errors, economies are “well behaved” (have unique, robust equilibria) in only 1/5 of

replica economies, half of 12 person economies and most 60 person economies. Thus, even though

individual behavior is frequently far from neoclassical in our experiment, aggregation generally

leads to remarkably neoclassical economies as the population grows large.

Our experiment relates to several existing literatures. The experimental general equilibrium

literature studies the mapping between induced individual preferences and aggregate market out-

comes, focusing on the predictive power of equilibrium theory. That literature began with partial

equilibrium experiments (e.g. Chamberlin [1948] and Smith [1962]) and later extended to general

equilibrium (e.g. Williams, Smith, Ledyard, and Gjerstad [2000]). An influential strand of this

literature studies economies with strong wealth effects in order to understand the dynamic laws

governing price adjustment (e.g., Plott and George [1992], Plott [2000], Anderson, Plott, Shimo-

mura, and Granat [2004], Hirota, Hsu, Plott, and Rogers [2005], Crockett, Oprea, and Plott [2011],

Goeree and Lindsay [2016]). A closely related strand proposes and tests models of adjustment

dynamics (e.g., Friedman [1984, 1991], Easley and Ledyard [1993], Gode and Sunder [1993], Cason

and Friedman [1997], Gjerstad and Dickhaut [1998], Asparouhova, Bossaerts, and Ledyard [2011],

Gjerstad [2013]). Our contribution to this literature is to replace artificial induced preferences with

naturally occurring preferences, enabling us to pose new questions about the empirical properties

of aggregate excess demand and the impact of preference instabilities on adjustment dynamics.

A second related literature is a series of papers in experimental finance in which, as in our

experiment, subjects’ valuations for risky assets are shaped by their homegrown preferences. A

prominent strand of this literature tests broad predictions of CAPM (e.g., portfolio separation

and mean-variance efficiency) by having subjects trade two risky assets together with a third

riskless asset [e.g., Levy, 1997, Asparouhova, Bossaerts, and Plott, 2003, Bossaerts and Plott,

2004, Bossaerts, Plott, and Zame, 2007]. Biais, Mariotti, Moinas, and Pouget [2017] compare two
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static procedures for eliciting demand for a single risky asset: a BDM mechanism (one price is

randomly selected for payment) and a market clearing rule (the price selected for payment is the

one that minimizes excess demand summed across participants). They find that the two elicitation

procedures are not statistically different in aggregate and that the equilibrium prices implied by

pooled choices respond to aggregate risk in the direction consistent with portfolio theory. Our

experiment differs from papers in this literature in that we first elicit preferences and use these

to construct specific economies with a range of price and allocation predictions and then test the

predictions against subsequent market behavior.

Experimental finance includes many other strands more distantly related to our paper, for

example a large strand studying asset bubble formation in long-lived assets (e.g. Smith, Suchanek,

and Williams [1988], Asparouhova, Bossaerts, Roy, and Zame [2016]). Breaban and Noussair [2015]

and Crockett, Duffy, and Izhakian [2017] study general equilibrium economies and use separately

elicited risk parameters to help explain when and how bubbles are formed.

There is also a vast literature on risk preference elicitation; see Cox and Harrison [2008], Char-

ness, Gneezy, and Imas [2013], and Friedman, Isaac, James, and Sunder [2014] for contrasting

overviews. One strand of that literature helped shape Phase 1 of our experiment. The subjects

in Choi, Fisman, Gale, and Kariv [2007], like ours, chose portfolios of two Arrow securities on a

sequence of budget lines. Our setup is different mainly in providing subjects with explicit and

constant endowments. Hammond and Traub [2012] extend Choi et al. by allowing early budget

line choices to impact the characteristics of future budget lines in order to sharpen tests of the

generalized axiom of revealed preference (GARP). Halevy et al. [forthcoming] provide a design

evaluating how preferences recovered from observed choices make out-of-sample predictions.2 Our

experiment uses budget line elicitation to make predictions rather than to test revealed preference

axioms or to recover structural preferences.3 We therefore see our findings as complementary, by

showing that preferences revealed in individual choice can have strong predictive power in settings

such as markets.

The remainder of the paper is organized as follows. Section 2 presents our experimental design

and Section 3 develops theoretical predictions and hypotheses for the experiment. Section 4 presents

2A related strand of literature examines choices from budget lines not tied to explicit risky assets; see for example

Andreoni and Miller [2002], Fisman, Kariv, and Markovits [2007] (other-regarding preferences) and Ahn, Choi, Gale,

and Kariv [2007] (ambiguity).
3Indeed, our design does not allow us to study GARP violations because subjects make decisions on non-crossing

budget lines. This is a direct consequence of the fact that subjects have a fixed endowment in all of the choices they

make in the experiment.
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the main results and Section 5 reports simulation exercises to better understand how aggregation

repairs pathologies in excess demands. We conclude in Section 6. Four Online Supplemental

Appendices provide additional details on the design, theory and analysis.

2 Design

At each decision in our experiment, the subject

1. receives a fixed endowment ω = (ωx, ωy) of Arrow securities for two equally likely states, X

and Y ,

2. faces a price p = px
py

for security X (with Y as numeraire) that varies across decisions,

3. chooses a non-negative portfolio (x, y) on the budget line px+ y = pωx + ωy, and

4. earns x (resp. y) tokens if the decision is paid and state X (resp. Y) occurs.

At the beginning of each session, each of 28 subjects is randomly and permanently assigned to

one of two “endowment types.” The 14 x-type subjects enter every decision node with allocation

ω = (100, 0), and the 14 y-type subjects begin with allocation ω = (0, 76).

These endowments are represented by a red dot at one end of their budget line as in Figure 1,

which shows one decision problem for a y-type subject. The subject can click different points on

the budget line to see text boxes displaying the corresponding (x, y) values; the last point clicked

becomes her actual choice when she clicks the Confirm bar (or when a countdown clock expires);

subjects who never click simply receive their endowment.4 The realized state is determined only

at the end of the session.

The experiment is divided into two Phases. In Phase 1 (periods 1-50) each subject makes a series

of 50 individual choices at exogenously given prices, one choice per period. In Phase 2 (periods 51

and 52), subjects are partitioned into markets and make choices at endogenously and dynamically

determined prices, many choices per period (we’ll refer to each choice in a given Phase 2 period as

a “round”). As explained in more detail below, subjects are paid for only one choice, determined at

random at the end of the experiment, with each phase being equally likely to determine payment.

4The clock expired at 120 seconds for choices 1-2 and the expiration time gradually decreased down to 40 seconds

for the 23rd choice and beyond. Whenever all subjects confirmed their choices before expiration, the next choice was

presented immediately.
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Figure 3

Figure 1: User interface. States X and Y are referred to as Heads and Tails respectively. Endowment here is

ω = (0, 76), price is p = 0.85 and intercept values are shown in bold on the right. User clicks any point (x, y) on

budget line, e.g., (33.00, 47.96), to check contingent payoffs, and clicks the green Confirm bar to make it her final

choice.

2.1 Phase 1: Revealed Preferences

Phase 1 (periods 1-50) elicits subjects’ individual preferences over portfolios. During the first

25 periods (referred to below as Phase 1P, for “practice”), each subject chooses portfolios at an

exogenous sequence of budget lines that pass through her fixed endowment point with -slopes (or

prices) p that jump erratically between 0.2 and 5.0. The actual price sequence is always (1.06, 0.36,

1.31, 0.64, 5.00, 2.00, 0.70, 1.43, 2.81, 0.57, 0.83, 0.28, 2.33, 1.00, 0.43, 0.89, 1.57, 1.21, 0.94, 0.50,

3.57, 0.76, 0.20, 1.75, 1.13). In the next 25 periods, called Phase 1R for “revealed,” each subject

again faces the same price sequence.5

After period 50, the computer assigns each subject a “preference type” based on their Phase

1R choices and uses these types to assign subjects to markets.6 The computer algorithm (detailed

5Prices are not shown explicitly and nothing special happens between periods 25 and 26. Thus, given the erratic

price sequence, we do not expect subjects to realize that the sequence is repeated.
6We chose ex ante to treat Phase 1R choices as individuals’ revealed preferences. Phase 1P was designed to give
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in Appendix A) chooses the 2 most erratic subjects of each endowment type and assigns them

as preference type E. Remaining subjects are classified as highly convex (H) preference types or

less convex (L) preference types according to the non-parametric measure Sx described in Section

3.1 below. Preference type Hx consists of the 6 remaining x-type subjects with the most convex

preferences (the lowest values of measure Sx), and type Lx consists of the other 6 x-type subjects.

Types Hy and Ly similarly consist of the 6 subjects with the most and 6 with the least convex

preferences among the 12 remaining subjects with endowment (0, 76). Subjects are never told their

preference type (or even that the software is classifying them).

2.2 Phase 2: Market Exchange

Preferences elicited in Phase 1 and the sorting scheme enable us to construct four distinct laboratory

economies in each session. First (in period 51) the software constructs two Phase 2M (M for main)

economies: HxHy economies match the 6 Hx (most convex x-endowed) subjects with the 6 Hy

(most convex y-endowed) subjects to trade in one economy, and simultaneously LxLy economies

match the 6 subjects of each endowment type classified as least convex.7 Thus there are 12 subjects

in each economy.

Next (in period 52) the software re-sorts subjects into two Phase 1S (S for “shuffle”) economies,

HxLy and LxHy. As the labels suggest, HxLy matches the 6 revealed most convex potential

suppliers of x with the 6 least convex buyers of x, and LxHy does the reverse. The two Phase 1M

economies together with the two Phase 2S economies ensure that each subject engages in market

interaction with each subject of the opposite endowment type.

In each Phase 2 economy, subjects trade using a version of the venerable Tatonnement adjust-

ment process [Walras, 1877]. Under this institution, the market sets an initial price and gradually

adjusts it, round by round, according to market-wide expressed excess demand. Only when excess

demand reaches zero are desired trades consummated, at the final price.

subjects practice with the interface before making their “real” choices but, as explained below, it also allows us to

assess the stability of elicited preferences.
7Subjects know they are participating in one of two equally-sized markets, but do not know the sorting procedure.

Each subject of preference type E is essentially a “non-voting” participant in one of the two markets: he sees the

same budget lines and makes the same sort of choices as the other participants, but his choices (and endowments)

are ignored in computing excess demand Z. By classifying a handful of subjects as E types and excluding them from

markets, we hoped to remove subjects who were confused and therefore making random choices. As it turns out,

most E types made fairly stable choices and this design decision likely had little effect on our results.
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Our tatonnement implementation is similar to the one that Guler, Lugovskyy, Puzzello, and

Tucker [2012] use in an induced value experiment. Each market begins in round 0 with the initial

price p0 = 1.57. In each round each subject selects an allocation along the corresponding budget

line (e.g., in round 0 it is the line with slope = -1.57 and, depending on the subject’s endowment

type, intercepts either x = 100 or y = 76), using essentially the same interface as in Figure 1. Total

demand D is the sum over the 12 market participants of the x-components selected in that round.

Total supply S is the sum of endowed x over the participants, so it is always S = 6(100)+6(0) = 600.

Excess demand is Z = D − S.

The tatonnement algorithm selects a price increment for the next round that is a monotone

and sign-preserving function of Z. For example, if Z < 0 in round t (as we anticipate at p0 = 1.57

given the relative scarcity of security y), then the price pt+1 in the next round is strictly less than

the current price pt. As detailed in Appendix A, price changes in radians are proportional to Z up

to rounding, with the proportionality constant decreasing in later rounds. The adjustment process

is deemed complete, and trades are consummated, when the absolute value of per capita excess

demand |Z|/12, is less than 2.0 for three consecutive rounds or, if that criterion is never met, after

the 25th round. Subjects receive their actual demands in the final round of the adjustment process,

with the (typically very small) difference between the sum of these demands and the aggregate

endowment being supplied or consumed by the experimenter.

2.3 Implementation

At the conclusion of Phase 2 we pay subjects for their choice in one period determined randomly,

as follows. Each subject draws one ball (with replacement) from a bingo cage filled with one

hundred balls numbered 1-100. A draw between 1 and 50 means payment for chosen allocation in

the Phase 1 period with that number. A draw between 51 and 75 means payment for post-trade

allocation in the final round in Phase 2M, while a draw between 76 and 100 means payment for the

post-trade allocation in Phase 2S. Thus Phases 1 and 2 have an equal probability of being selected

for payment, as does each period within a given phase. After determining the relevant allocation

(x, y), the subject flips a coin. Heads (Tails) yields the payment x/3 (y/3), that is, one dollar for

every three tokens allocated to security X (Y) in the relevant period. The state for each subject

was determined by a coin flip.

We conducted four sessions between May and September 2016 at the Subotnick Financial Ser-

vices Center Lab at CUNY Baruch, each with 28 subjects recruited via e-mail through the subject
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pool maintained by the Department of Economics and Finance. Including instructions, practice

periods8 and payments, each session lasted about 120 minutes. Including the $7 showup fee, the

average subject earned $24.08 with standard deviation $14.51.

3 Theory and Hypotheses

In this section we use general equilibrium theory and an extended example to motivate a set

of testable hypotheses. Section 3.1 reviews some theory relevant to Phase 1 decisions and to

the sorting procedure presented in section 2. Section 3.2 shows how Phase 1 raw decisions lead

directly to general equilibrium predictions, without the need to estimate (or make any assumptions

about) individual subjects’ preferences. Section 3.3 reprises the challenges to general equilibrium

predictions in the context of our experiment. Finally, section 3.4 distills the theoretical discussion

into a set of empirical hypotheses.

3.1 Revealed Preferences

What restrictions on Phase 1 behavior does rationality impose? Suppose only that a subject is

minimally rational in that she prefers more money to less in either state and has no intrinsic

attachment to the x or y label; that is, suppose that she has continuous, monotone, symmetric

preferences over bundles. The following Proposition shows that from a budget set B with p < 1,

she will always select a bundle with more x than y.

Proposition 1. Let a minimally rational agent demand (x∗, y∗) ∈ B(p, ω) given price p > 0 and

endowment ω ∈ R2
+. Then (1 − p)(x∗ − y∗) ≥ 0. The inequality is strict if preferences are strictly

monotone and p 6= 1.

See Appendix B for a proof. The geometric interpretation of the inequality is that demand

(x∗, y∗) always lies in L∗, the portion of budget line between the point where it crosses the diagonal

and its intercept with the axis for the less expensive security.

Since the choice opportunities (x, y) are bundles of Arrow securities for two complementary

and equally likely states, the Phase 1 choices have structure beyond that imposed by general

general equilibrium theory. For example, we can say (see Appendix B) that the points in L∗ first

8There were five unpaid practice periods of the individual choice task prior to Phase 1 with price sequence (1.57,

0.64, 1.00, 0.36, 2.81).
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order stochastically dominate all other points in the budget set. Standard expected utility theory9

says that minimally rational preferences can be represented by a utility function U which is the

expectation of some Bernoulli function u. That is, there is some continuous strictly increasing

function u : [0,∞)→ [0,∞) such that U(x, y) = 0.5u(x) + 0.5u(y) represents the given preferences.

Moreover, if p 6= 1 and u is linear or convex then the agent will always choose the corner allocation

for the less expensive Arrow security, while if u is smooth and strictly concave then she will choose

that same corner allocation or a point in the interior of L∗.

Returning now to minimally rational preferences (that are montone, symmetric and continuous),

the next Proposition establishes that at any given price p 6= 1, the less substitutable are the goods,

the more balanced is the chosen bundle, i.e., the closer it is to the diagonal. “Less substitutable”

is formalized in Appendix B as “more convex than,” a partial ordering over preferences that is

defined via a uniform inequality on marginal rates of substitution.

Proposition 2. For given prices p > 0 and endowment ω ∈ R2
+, let (x∗U , y

∗
U ), (x∗V , y

∗
V ) ∈ B(p, ω)

be demands for two different minimally rational agents whose preferences represented by utility

functions U(x, y) and V (x, y) respectively, with V more convex than U . Then (1−p)(x∗U −x∗V ) ≥ 0.

If p 6= 1, both optima are interior and the more-convex-than ordering is strict, then the inequality

is strict.

Again, see Appendix B for a proof. This proposition justifies our non-parametric measure of

convexity Sx (used to categorize subjects as H or L preference types as described in Section 2.1),

which is defined as follows. For any subject i, let Sx be the sum of the units of security x that she

chooses at prices .70, .76 and .83 in Phase 1R.10 Since p < 1, Proposition 1 says that every rational

subject will select bundles with x ≥ y at these prices, so Sx will not be too small. More to the

point, Proposition 2 says that rational subjects with more convex preferences will select a bundle

closer to the diagonal, hence with less x, than those with less convex preferences. Thus, according

to the two Propositions, Sx gives us the desired sorting among minimally rational subjects whose

preferences can be ordered by convexity. Even for subjects who are not minimally rational, Sx is

9Prospect theory [Kahneman and Tversky, 1979] agrees if, as seems plausible, the reference point is 0. Allocations

then are all in the gain domain where the value function reduces to an ordinary Bernoulli function. Prospect theory

[original or cumulative, Tversky and Kahneman, 1992] also allows for a probability distortion function, but our

experiment would seem to have no scope for that function since the probabilities for the two alternative states are

both constant at 0.50.
10Why those prices? The budget line is identical for both endowments only at price 0.76, allowing direct compara-

bility of all subjects. To smooth out idiosyncrasies, we a priori included the two adjacent prices where budget lines

are not far from identical.
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Figure 2: Choices and general equilibrium for two textbook Bernoulli functions. The first column

plots the share of Arrow security X as a function of ln p for an agent with any positive endowment who maximizes

the expectation of u(c|γ) = 1
1−γ c

1−γ for γ = 0.1 (top row) and for γ = 1.5 (bottom row). The second column shows

excess demand Z for an economy consisting of two such agents, a y-type with endowment (0, 76) and an x-type with

endowment (100, 0). The third column shows the corresponding offer curves in an Edgeworth box with the x-type’s

endowment in the lower right corner. Grid prices are rays emanating from that point; the x-type’s offer curve (dashed

lines) and the y-type’s offer curve (solid lines) intersect at the competitive equilibrium allocation.

well defined and points in the right direction.

For the special case of preferences given by expected utility, Corollary 1 of Appendix B shows

that more concave Bernoulli functions imply more convex preferences. Thus when conventional

risk aversion measures apply, Sx sorts subjects by risk aversion: all subjects in a session classified

as Hx will be more risk averse than any subject classified as Lx, and similarly for Hy and Ly.

A parametric example may help make the point. Suppose that agents have CRRA Bernoulli

functions u(c) = 1
1−γ c

1−γ (and = ln c when γ = 1), for γ > 0. Agents solve max[.5u(x) + .5u(y)]

s.t. y + px = ωy + pωx, resulting in demand x∗ =
ωy+pωx

p+p
1
γ

. It is easy to verify that x∗ is indeed a

decreasing function of the risk aversion parameter γ when p < 1.
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Figure 2 uses such textbook agents (with γ = 0.1 and γ = 1.5) to illustrate some consequences

of our experimental design. The first column of the Figure shows how these agents would behave

in Phase 1R, by plotting the share x
x+y of x chosen as a function of ln(p). Minimally rational

choices, consistent with Proposition 1, lie exclusively in the upper left and lower right quadrants

in these plots. Likewise, the more risk averse agent (the agent with more convex preferences), with

parameter γ = 1.5, demands less x than the γ = 0.1 agent at p < 1, consistent with Corollary 1.

3.2 General Equilibrium

The remaining columns of Figure 2 show how our sorting and Phase 2M procedures would play out

if all subjects were CRRA agents, half of each endowment type with parameter γ = 0.1 and the

other half with γ = 1.5. The middle column plots excess demand

Z(p) =
∑

[x∗ − ωx] = 6[
76 + 100p

p+ p1/γ
− 100]. (1)

In the top row, the sorting algorithm puts all the γ = 0.1 agents, those with less risk aversion, into

market LxLy. The competitive equilibrium (CE) price p∗ is the unique solution to Z(p) = 0, so

p∗ = (.76)γ ≈ 0.973. Since p∗ is not on our price grid, the Figure shows the CE price tunnel [0.94,

1.00], the interval spanning adjacent grid points where Z changes sign.

The last column of Figure 2 shows the corresponding Edgeworth boxes, including price rays (so

the CE price “tunnel” is now a wedge), and the offer curves x̂(p) = w
p+p1/γ

, ŷ(p) = w−px̂(p), where

w represents wealth and is equal to 76 for y-types (whose offer curve is represented by a dashed

line) and 100p for x-types (solid line). The offer curves are close together in the top row, implying

large (positive or negative) excess demand immediately outside of the CE price tunnel and thus

squeezing the price towards its neutral value of 1.0. The allocation lies in the largest rectangle

defined by the four x- and y-coordinates at which the offer curves enter or exit the price tunnel (if

the tunnel spans prices pi, pi+1, then those coordinates are (x̂k(p), ŷk(p)), k = S,D and p = pi, pi+1,

where S and D reflect endowment types (0, 76) and (100, 0), respectively.

The calculations for the bottom row are similar. The agents here are more convex (more

specifically, in this parametric example, they are more risk averse), with identical γ = 1.5. The

corresponding CE price, the unique root of equation (1), is p∗ = (.76)1.5 ≈ 0.663. Thus the price

tunnel is at [0.64, 0.70] for this textbook HxHy economy, far below the neutral price of 1.0. The

offer curves intersect at a much wider angle, implying much narrower excess demand outside the

CE price tunnel so the allocation box is tighter than in the LxLy economy. We observe dominant
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wealth effects for an agent’s endowed good directly from these offer curves; the agent’s quantity

demanded of her own endowed good is increasing in that good’s relative price.

Despite its very special parametric structure (agents are expected utility maximizers with par-

ticular Bernoulli functions), this example illustrates two general points. First, everything plotted

in the right two columns of Figure 2 can be calculated using only the choices plotted in the left

column. It follows that once we know Phase 1 choices we can make Phase 2 market predictions

without making any parametric assumptions. Second, just as the upper row of panels in Figure 2

differs from the lower row, we can expect subjects sorted by Sx to produce aggregate excess demand

with different locations and shapes, and therefore to produce different predicted market outcomes.

To work out those predictions, Appendix B formalizes a “price tunnel” as Revealed Competi-

tive Equilibrium (RCE) [pi, pi+1], an interval spanning adjacent grid prices where excess demand

changes sign. Roughly speaking, an RCE is simply a general competitive equilibrium price revealed

by individual subjects’ choices in Phase 1R. We generally get a price interval instead of a point

prediction due to the discreteness of the Phase 1 price grid.

Comparative statics predictions arise from sorting subjects according to the convexity indicator

Sx, and applying the following

Proposition 3. Suppose that Edgeworth box economy A is more convex than Edgeworth box econ-

omy B, and that aggregate x endowment exceeds aggregate y endowment in each economy. Then

min{p ∈ RCE(A)} ≤ min{p ∈ RCE(B)} and max{p ∈ RCE(A)} ≤ max{p ∈ RCE(B)}.

See Appendix B for a proof, and a definition of “more convex than” economies. The idea is

that there is some way to pair up agents in the two economies such that every A agent has more

convex preferences than his B counterpart. The conclusion is that, in an appropriate sense, RCE

prices are lower in Economy A.

3.3 Existence, Uniqueness, Stability and Convergence

We designed the experiment mindful of two kinds of potential problems that might prevent GE

theory from usefully predicting prices and allocations in markets. The first kind of problem is

suggested by the the Sonnenschein-Mantel-Debreu theorem. RCE fails to exist if revealed excess

demand ZR remains positive (resp. remains negative) over the entire price grid, implying that p∗ is

above the maximum price and possibly is infinite (resp. is below the minimum price and possibly is

zero). Equally problematic, ZR may change signs more than once, implying multiple competitive
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equilibria. These possibilities can not be ruled out even if individual revealed preferences are quite

well behaved.11 Even under vanilla preferences (e.g., arising from CRRA Bernoulli functions),

RCE can fail to exist and, using two or more different preferences (e.g., γ parameters), economies

with multiple equilibria can be constructed [see also Toda and Walsh, 2017]. A related problem is

that the RCE may be tatonnement-unstable: classic theory [summarized e.g. in Arrow and Hahn,

1971] predicts that mechanisms governed by tatonnement dynamics (including the tatonnement

institution used in our experiment) will be dynamically unstable at an upcrossing RCE, where

ZR(pi) < 0 < ZR(pi+1). In the neighborhood of such equilibria tatonnement dynamics tend to

amplify deviations – prices increase when above and decrease when below the price where ZR = 0.

The SMD literature attributes these pathologies to “backward bending” excess demand due to

“wealth effects” where non-substitutability is crucial. The intuition is as follows. You own a good

X from which you derive a lot of your income. Suppose that the relative price of good X drops,

so you now have less income. If goods are close substitutes, you simply keep more of the endowed

good and buy less of everything else; no problem. But if you really like diversified bundles, then you

still want to buy other goods W, Y etc, and that’s going to cost you more of your X than before.

So you may keep less X even though its price decreased. If your trading partners also regard X

as not a good substitute for the other goods, then their demand for X may not increase enough

to offset the reduction from people like you. Thus aggregate excess demand for X can, over some

interval of prices, decrease as own price decreases, but for higher or lower prices outside this range

have the usual slope. This sort of non-monotonicity (“backward bend”) is the key ingredient for

the most famous examples of multiple equilibria in the GE literature [e.g., Scarf, 1960, Gale, 1963,

Shapley and Shubik, 1977].

In our experiment, some subjects may regard the two Arrow securities as not very substitutable,

especially if they want to ensure that their wealth never falls below some threshold value. To the

extent that they demand bundles near the diagonal [x = y] even at price ratios far from 1.0 (e.g.,

they have low values of Sx), our subjects will contribute to SMD pathologies. Indeed, as shown

in Corollary 1, even a textbook EU-maximizer who is a highly risk averse will want to hold more

nearly equal quantities of the two securities, and so will contribute to non-monotonic aggregate

excess demand Z.

11Sonnenschein [1973] showed that in a two-good economy such as ours, even nicely behaved preferences can produce

wild excess demand functions; Mantel [1974] and Debreu [1974] soon generalized that result to economies with more

goods. Indeed, Mas-Colell [1977] showed that the set of general equilibrium prices is essentially arbitrary even if each

consumer i has a nice utility function Ui(x, y) representing continuous, monotone and strictly convex preferences.
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We shall say that an economy E is nice if (1) an RCE exists and it is unique, and (2) it is

tatonnement-stable. Following the SMD literature, we shall say that the economy is pathological

if it is not nice, i.e., if it has non-existent RCE or non-unique RCE or unstable RCE. Our sorting

procedure, then, segregates agents more likely to produce pathologies into the Hx and Hy groups,

and agents more likely to facilitate nice economies into the Lx and Ly groups.

The second kind of potential problem arises from preference volatility. If individual subjects’

choices in Phase 2 are sufficiently different from their choices in Phase 1R, then economies might

fail to reach RCE benchmarks. Section 4.3 below will propose alternative empirical measures for

the degree σR of volatility revealed by available data (the discrepancies between Phase 1R and

Phase 1P choices).

To understand the potential problem, suppose that we have a nice economy whose unique RCE

tunnel [pi, pi+1] is not near the top of price range. Recall that the n price grid points are ordered

from low to high, so suppose that i < n − 3. Niceness ensures that ZR(pi+3) < 0, but suppose

that |ZR(pi+3)| is very small. Then even moderate preference fluctuations can cause the excess

demand observed in the market phase to reverse sign at a price near pi+3, causing the tatonnement

algorithm to halt or reverse course instead of moving towards the RCE. Thus volatile preferences

in Phase 2 can prevent convergence to RCE when Phase 1R excess demand is (in absolute value)

small. We will classify RCE that suffer from this danger as fragile and RCE that do not as robust ;

again, see Appendix B for formalities.

Intuitively, an RCE is robust if the excess demand curve is sufficiently steep in its neighborhood,

and is fragile if the excess demand curve is flat relative to price grid increments and volatility σR.

For example, excess demand Z is steeper near RCE in the upper center panel of Figure 2 than in

the lower center panel. We would therefore expect that fragility is more likely in the lower panel,

which is associated with greater risk aversion and higher values of Sx.

3.4 Testable Hypotheses

These theoretical observations lead to a set of hypotheses concerning excess demands, RCE and

robustness implied by Phase 1 decisions. They also generate a second set of hypotheses concerning

the behavior of markets in Phase 2.

We begin with the first set. The SMD literature provides few reasons to expect excess demands

to be consistently nice in the economies we construct. That concern is compounded by the far-
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from-neoclassical heuristics observed in prior experiments eliciting preferences over risky assets.12

Thus our sorting procedure should affect the frequency of pathology — economies with more H

(high convexity) agents should be more susceptible. Of course, our non-parametric measure Sx of

convexity looks only at a narrow range of prices, and problems might occur elsewhere. Nevertheless,

we have the following plausible, a priori prediction.

Hypothesis 1.1: Some of our economies will be pathological. HxHy economies, which involve the

most revealed-convex agents, will be pathological more often than the other three economies, and

LxLy economies will be pathological less often than the other three.

Next, we expect volatility in individual preferences to be large enough relative to excess demand

to sometimes produce nice but fragile RCE. Since subjects with greater convexity (or lower Sx)

should be no less volatile than other subjects, we expect fragility/robustness to depend mainly on

how steep the excess demand function is. Figure 2 illustrates that more nearly risk neutral agents

tend to produce steeper excess demand curves in a neighborhood of RCE. We can show that this

is true for economies consisting of agents with identical CRRA Bernoulli functions, and also true

over a wide range of parameter values for identical CARA Bernoulli functions. More generally,

for heterogenous rational agents, more convex preferences tend to be associated with flatter Z

in a neighborhood of RCE,13 but there are counterexamples.Based on this intuition, we pose the

following pattern as an empirical hypothesis.

Hypothesis 1.2: Preferences will be volatile enough so that not all RCE will be robust. HxHy

markets will have the fewest robust RCE, and LxLy markets will have the most robust RCE.

Finally, our sorting procedure should affect the RCE price itself, as suggested in the CRRA

example in Figure 2. In our experiment the aggregate endowment of x exceeds that of y, and the

12Choi et al. report evidence of prevalent disappointment aversion, whereby subjects choose a perfectly hedged

portfolio for some neighborhood about the risk-neutral price, then “jump” to far less risk-averse portfolios just outside

of this neighborhood, in some cases all the way to a corner allocation. In an earlier working paper version of the paper

they also identify several other simple heuristics which we will discuss in a later section. Asparouhova et al. assume

subjects have mean-variance utility but make noisy choices, and for many subjects the estimated noise component

of choices is at least as important as the variance (risk aversion) component. Biais et al. report that around 30% of

portfolio choices observed in their experiment are first order stochastically dominated.
13Here is a very rough heuristic argument. Z(p̂) < 0 is largely independent of convexity for a sufficiently high price

p̂, at or above our starting point p = 1.57, since most subjects will consume very little x at such prices. Let p∗ be the

lower edge of the RCE tunnel for the more convex economy. By Proposition 3, the RCE tunnel for the less convex

economy occurs at prices above p∗. Therefore, the average slope Z′ of excess demand between p̂ and p∗ is less for the

more convex economy, and there would seem to be no general tendency for the ordering in a neighborhood of RCE

to differ from the average ordering of slopes.
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revealed convexity of every Hx subject exceeds that of every Lx subject, and likewise Hy subjects

are more revealed-convex than Ly subjects. To the extent that “more revealed-convex as measured

by Sx” implies truly “more convex than,” Proposition 3 implies

Hypothesis 1.3: In each session, RCE prices in the HxHy economy will be lower than those in

the LxLy economy.

Turning now to hypotheses concerning Phase 2 outcomes, our premise is that RCE will orga-

nize outcomes produced by markets. First, we hypothesize that RCE comparative statics will be

matched in the data: when we sort subjects into markets A and B, we expect prices to be higher

in market A if its RCE is higher.

Hypothesis 2.1. Final prices observed in Phase 2 will have the same ordering in each session as

the RCE predictions for that session.

Hypothesis 2.1 is an ex post prediction (i.e., conditioned on Phase 1 behavior). We can

strengthen it by combining it with Hypothesis 1.3 to obtain the following ex ante (i.e., conditioned

only on the experimental design) prediction.

Hypothesis 2.2. In each session, final prices observed in Phase 2 will be lower in HxHy economies

than in LxLy economies.

Next, we predict that the accuracy of RCE quantitative predictions will depend on how volatile

preferences are relative to the steepness of excess demand. Ex post, we expect our classifications

of RCE as robust or fragile in each economy to predict how well markets converge:

Hypothesis 2.3: The tatonnement dynamics will converge more quickly and reliably to robust

RCE than to fragile RCE.

Ex ante, we expect LxLy economies to have weaker wealth effects and steeper excess demands.

Assuming no systematic difference in volatility, it follows that they will have more robust equilibria

than HxHy economies. Thus

Hypothesis 2.4. Final prices will be closer to RCE in LxLy than in HxHy markets.

4 Results

In this section we report our empirical results. Section 4.1 characterizes the individual preferences

revealed in Phase 1. Section 4.2 goes on to show that, although individual preferences are consistent

with SMD-type pathologies in simple replica economies, all the actual 12-person economies in our
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experiment turn out to be nice. Section 4.3 assesses volatility of preferences, and uses volatility

measured in Phase 1 choices to classify RCE as fragile or robust. Finally, Section 4.4 presents

results from Phase 2 markets. Comparative statics predictions always hold and we get convergence

to robust RCE but not always to fragile RCE.

4.1 Overview of Individual Choices

Behavior is diverse in Phase 1, but it can be classified into three broad types, as illustrated in the

first row of Figure 3. Following Choi et al., the figure plots the x-share, x/(x+ y), of a subject’s 25

choices on the vertical axis against log price, ln(p), on the horizontal axis. We classify a subject as

Dominated if, as in Panel (c), she chooses more than 1/3 of the time a dominated allocation (recall

Lemma 1), e.g., y > x when y is more expensive so ln(p) < 0. Only 5 of our 112 subjects were so

classified (and fewer than 10% of choices were dominated overall in the data) suggesting that the

vast majority of subjects understand the revealed preference task.

We classify a subject as Risk Neutral, as in panel (b), if (with no more than one exception) she

invests entirely in the less expensive Arrow security. About 7% of our 112 subjects are so classified.

The remaining subjects (almost 90%) are classified as Risk Averse.

Some of those subjects make choices consistent (up to a bit of noise) with maximizing a concave

Bernoulli function, as in panel (a). However, as in Choi et al. we find widespread use of the three

heuristics illustrated in the middle panels of Figure 3. We’ll focus on identifying subjects who

employed these heuristics more than one-third of the time in 1R.

The “Hedging” heuristic is to choose an allocation on the diagonal x = y for a range of prices

around p = 1. Panel (d) shows an extreme example consistent with infinite risk aversion; more

commonly, outside of a smaller range, hedgers move towards (or even jump directly to) the less

expensive corner. As noted in Lemma 2, that sort of pattern is not consistent with maximizing

the expected value of a Bernoulli function, but it is consistent with maximizing a utility function

U(x, y) with a kink on the diagonal, as in Disappointment Aversion [Gul, 1991]. Just over 10% of

subjects make hedging-consistent decisions for more than 1/3 of prices.

Panel (e) shows a weaker form of hedging that we call a “Floor” strategy. For a range of prices,

the subject purchases some fixed minimum quantity (here about 30) of the more expensive Arrow

security and spends the rest of her wealth on the cheaper security. Nearly 30% of our subjects set

a floor that they enforce more than 1/3 of the time. Finally, panel (f) illustrates a heuristic we call

“Ceiling,” adopted by 6% our subjects: over a range of prices, pick a fixed maximum amount of
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Figure 3: Phase 1R choices for six selected subjects and excess demands for pairs of subjects.

Classifications (and sample share in %) are noted at the top of panels (a-c). Bottom row (g-i) plots replica economy

excess demands for selected pairs of subjects.
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the cheaper security and spend the rest on the more expensive security.14 Appendix C shows the

full set of choices from every subject in the dataset. Overall, choices from Phase 1 are similar to

those observed in prior work.

4.2 Aggregate Excess Demands and Equilibrium Predictions

What sort of general equilibrium (RCE) predictions do we get when we aggregate these individual

choices? As emphasized in section 3.2, we need not impose parametric assumptions about utility

functions or error structures to answer this question. Our experiment is deliberately designed to

allow us to sidestep such assumptions and to calculate aggregate excess demands directly at each of

the 25 prices subjects face in Phase 1R simply by summing demands (x− ωx) at that price across

the subjects participating in that market.

The third row of Figure 3 illustrates the procedure using subjects pictured in the first two rows

(and some similar subjects from elsewhere in the dataset). Panel (g) shows the excess demand

function of the subject pictured in panel (a) matched with a y-type who made similar Phase 1

choices. Competitive equilibrium exists where excess demand crosses zero. The result is a nice

empirical excess demand function that crosses zero only once and at a price below 1, showing this

economy has a unique RCE that reflects the risk aversion of its members.

Panels (h) and (i) show that pathologies could easily arise from observed Phase 1 behavior.

Panel (h) shows the y-type subject pictured in panel (d) matched with an x-type who follows a

similar Hedge heuristic. The resulting excess demand function never crosses zero and so RCE

fails to exist. Panel (i) matches the subjects pictured in panels (d) and (e) together, resulting in

an excess demand function that crosses zero three times producing three RCE, one of which is

dynamically unstable. The per-capita (x2) pictures are exactly the same if both participants are

replicated m times, for an arbitrary positive integer m. In section 5 below, we will see that such

pathological cases are quite common in representative agent, replica economies, occuring in nearly

half of the possible pairings of our subjects. This would seem to support Hypothesis 2.1.

However, the economies we construct in our experiment (like naturally occurring economies),

are not replica economies, with identical agents on each side of the market. Rather, they are built

from 12 different human subjects with possibly very different preferences. Figure 4 plots excess

demand functions for each session (rows 1,2,3 and 4) and economy (columns “LxLy”, “HxHy”,

14In a working paper version of Choi et al., the authors identify similar heuristics calling examples like panel (a)

“S” (Smooth), examples like panel (d) “D” (Diagonal) and examples panel (e) a “secure level heuristic” or “B(w).”
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Figure 4: Excess demand functions for each economy in our dataset. Panels are organized into columns by

session and row by economy type (marked on the outside of the grid). Bootstrapped interquartile bands are plotted

around each function in gray, and standard deviation volatility bands as dashed-and-dotted lines.
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“LxHy”, “HxLy”). The results are striking: all 16 constructed economies are nice. Excess demand

always crosses zero exactly once, with a negative slope. This is true even in “HxHy” economies

where we deliberately sorted subjects to produce strong wealth effects and therefore vulnerability

to SMD-style pathologies!

Result 1. Contrary to Hypothesis 1.1, RCE exists, is unique, and is dynamically stable in all 16

of the economies we construct.

The data thus allow us to reject Hypothesis 1.1. Intriguingly, this rejection is based not on the

nature of individual preferences but rather on the size and structure of our experimental economies.

We see frequent pathology in replica economies built using individual subjects’ choices, but this

seems to disappear with aggregation. Section 5 will investigate the role of aggregation and hetero-

geneity in attenuating pathology.

Figure 4 also plots RCE price tunnels as vertical hashed rectangles and shows evidence in

support of Hypothesis 1.2. Comparing the first two rows for each column in Figure 4 reveals

that, in each session, RCE occurs at much lower prices in HxHy (high risk aversion) economies

than corresponding LxLy (low risk aversion) economies. While these differences in RCE were a

deliberate aim of the design, we also have RCE price differences occurring by chance in the Phase

2S economies (HxLy and LxHy): RCE prices are higher in LxHy than HxLy economies in sessions

1 and 2. Thus Phase 1 choices and our sorting procedure provide a number of RCE comparative

statics price predictions to test in our Phase 2 markets.

Result 2. Revealed competitive equilibrium prices are lower, for each cohort, in HxHy economies

than in LxLy economies, supporting Hypothesis 1.3. Moreover, revealed competitive equilibrium

prices are higher in LxHy than HxLy in sessions 1 and 2.

4.3 Preference Volatility and RCE Robustness

Preference volatility in our experiment is estimated by comparing a subject’s Phase 1R choices to

her choices in Phase 1P for exactly the same 25 budget lines. For each subject h and grid price pi

we take the discrepancy in the chosen x-component dhi = xhi1R − xhi1P and compile them in the set

DE = {dhi : h ∈ E , i = 1, ..., 25} for each of the four economies E = LxLy, HxHy, LxHy, HxLy in

each session. Figure 5 (a) plots (in black) the cumulative distribution functions (CDFs) for each

E , combining the DE ’s across sessions. For reference the panel includes (in gray) the same statistic

for simulated agents making two iid uniform random choices on their 25 budget lines. The gray

reference line indicates far more dispersion, while the black lines stay close to zero over most of
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Figure 5: Choice discrepancies and sample excess demand functions. Panel (a) plots discrepancy

CDFs for uniform random choices on the budget line (gray line) and for all subjects’ observed discrepancies

in all 4 economies (HxLy, etc, black lines). Panels (b) and (c) plot actual excess demand functions for the

two extreme economies (LxLy and HxHy, in black) and for dozens of bootstrapped excess demands (in gray).

the range. This shows that our subjects’ choices have considerable consistency, but the upper and

lower 5% tails indicate occasional large discrepancies.

Is that volatility significant enough to interfere with convergence to RCE? To find out, we

bootstrap thousands of excess demand curves as follows. For a given economy E in a given session

and each grid price pi, begin with aggregate excess demand Z(pi) and for each of the 12 active

participants h ∈ E , add or subtract (with equal probability) the absolute discrepancy |dhj | for a

random grid point j drawn with replacement. The result is a single realization of bootstrapped

demand, as illustrated by each of the dozens of gray lines plotted in panels (b) and (c) of Figure

5. In panel (c) these realizations frequently cross zero outside of the RCE tunnel, indicating a

fragile RCE. By contrast, in panel (b), where the revealed excess demand is much steeper, the

bootstrapped excess demands rarely cross zero outside of the RCE tunnel, indicating that the

equilibria are robust.

That perspective leads to our main empirical definition of volatility as the interquartile range of

the bootstrapped excess demands.15 Our bootstrap procedure produces a symmetric distribution

of aggregate discrepancies around zero, and the volatility measure σR for economy E is equal to

15The interquartile range is the most commonly used of the “robust measures of scale” as it is highly resistant to

influence by outliers.
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the 75th (or, equivalently, the −25th) percentile of the aggregate discrepancies for that economy

(i.e., percentiles of the sum of 12 randomly signed draws from the appropriate distributions). The

gray volatility bands around the excess demand functions plotted in Figure 4 are precisely that

interquartile range.

Applying the earlier definitions, we classify the RCE as fragile if the volatility bands (or in-

terquartile ranges) cross zero at grid prices outside of the RCE price tunnel and otherwise classify

it as robust. Figure 4 labels an economy as “upside fragile” if these interquartile ranges overlap

zero at grid prices above (to the right of) the RCE, and “upside robust” otherwise. Similarly, it is

labelled “downside fragile” or “downside robust” (in the lower left corner of each panel) according

to whether or not the interquartile ranges overlap at grid prices below RCE. Because the prices

in our markets initiate at a price p0 = 1.57 always above the RCE, we expect upside fragility

or robustness to be more relevant for determining whether prices reach the RCE in our Phase 2

markets.

The Figure also shows a parametric alternative measure of volatility. Here we redefine σR for a

given economy as the standard deviation of DE , and plot the corresponding volatility band edges

as dashed-and-dotted lines. The standard deviation is less robust to outliers leading to a wider

band, but fragility classifications derived from the non-parametric bootstrapping bounds and the

parametric standard deviation bounds generally agree, especially for the more important upside

fragility measure.

RCE in LxLy economies are universally robust – volatility bands never overlap zero outside

of the RCE tunnel. By contrast in HxHy treatment where excess demand is flat, most economies

(sessions 2, 3 and 4) have upside fragile equilibria, with volatility bands overlapping zero often

at multiple prices. Results are intermediate in LxHy and HxLy, where only 1/4 of economies are

upside fragile (sessions 1 and 2 of HxLy) and half are downside fragile. This pattern strongly

supports Hypothesis 1.3.

Result 3. Consistent with Hypothesis 1.3, most LxLy RCE are fragile and all HxHy RCE are

robust, with an intermediate mix of fragility and robustness in LxHy/HxLy economies.

Importantly, variation in fragility/robustness across economies is primarily driven by differences in

the slope of excess demand functions rather than differences in the volatility of preferences. Indeed,

as Figure 5 (a) shows, preferences in all four types of economies tend to be similarly noisy.16

16Indeed, comparing subject-wise standard deviations of the error using Wilcoxon tests, we cannot reject the

hypothesis that subjects’ preferences are equally stable in each pairwise comparison of economy-types at conventional

levels of significance.
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4.4 Market Outcomes

How well do the RCE and robustness/fragility classifications predict behavior in Phase 2 markets?

Figure 6 plots a panel for each of our 16 economies that shows the predictions and actual market

behavior. The left side of each panel shows inverse excess demand function and volatility band

(derived from Phase 1 decisions), while the right plots round-by-round prices observed in Phase 2.

The horizontal hashed rectangle extending across the panel represents the RCE price tunnel, and

the fragility labels established earlier are shown at the top (bottom) of each panel.

First, we evaluate the comparative static hypotheses, 2.1 and 2.2. In every session, LxLy

economies generate higher RCE price predictions than corresponding HxHy markets and in every

case the final prices indeed are higher in LxLy, supporting Hypothesis 2.2. Moreover, in session 1

and 2, RCE predicted higher prices in LxHy than HxLy markets, and in each case we observe this

ordering of final prices, supporting Hypothesis 2.1. A paired Wilcoxon test rejects the hypothesis

that final prices are equal across economies in sessions and periods in which RCE differ (p < 0.001).

Result 4. Consistent with Hypothesis 2.1, prices obey RCE comparative static predictions for every

session and market period in our experiment. Consistent with Hypothesis 2.2, prices are universally

lower in HxHy than LxLy economies.

Next we evaluate the quantitative price predictions of the RCE, testing hypotheses 2.3 and 2.4.

In 11 of our markets, RCE are upside robust and in every case prices reach the equilibrium bounds

and converge to a point at or below the competitive equilibrium tunnels. In 10 markets, RCE are

both upside and downside robust and in all but one (HxLy in session 3), prices not only reach

the RCE but remain within its bounds. We conclude that when RCE are robust, markets reliably

converge to the RCE.

In 5 of our markets, RCE are upside fragile and in only one of these do prices reach as far as

the competitive equilibrium. In one additional case, the RCE is downside fragile and in this case

prices reach the RCE but continue to fall below the RCE bounds, ending at a lower price. Thus,

markets typically fail to converge to fragile RCE.

Overall, robustness and fragility classifications have strong predictive power on convergence to

the RCE, supporting Hypothesis 2.3. A Chi-square test allows us to reject the hypothesis that

prices are equally likely to converge in fragile and robust economies (p = 0.016).

The results also support Hypothesis 2.4 that our treatment interventions controlled the reliabil-

ity of equilibrating dynamics: prices reach the RCE in all of our LxLy economies (our sorting algo-
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Figure 6: Inverse excess demand functions (left side of each panel) and time series of prices (right side of

each panel) for each economy in the dataset. Panels are organized into columns by economy type and row by

session (marked on the outside of the grid).
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rithm is expected to give these the steepest excess demand functions), the majority of HxLy/LxHy

economies, but only a minority of HxHy economies (expected to have the flattest excess demand

functions).

Result 5. As predicted by Hypothesis 2.3, markets reliably convergence to robust RCE, but usually

fail to converge to fragile RCE. Consistent with Hypothesis 2.2, convergence occurs with greater

reliability in LxLy than HxHy economies.

Finally, we compare final allocations in Phase 2 markets to RCE predictions. Figure 6 plots

Edgeworth boxes for the mean subject in each economy. In each case, boxes are drawn from the

perspective of x-endowed sellers, with units of x on the x-axis and y on the y-axis. Numbers at

the top and right hand side of each box show corresponding units for y-endowed buyers.The initial

allocation is in the lower right hand corner of each box, and from this allocation we draw rays

representing the price grid and plot offer curves generated by Phase 1 decisions. x-endowed sellers’

offer curves are solid lines and y-endowed buyers are dashed lines. Where the offer curves overlap

we plot a shaded wedge that visualizes the RCE price bounds. Finally, we include shaded vertical

and horizontal boxes visualizing the RCE allocation bounds, as described in section 3.2, with double

shading in regions consistent with RCE for both x and y.

In each Edgeworth box we include a red “X” visualizing the final allocations achieved by the

corresponding market and a red dashed line corresponding to the final market price. The results

show strong evidence of convergence, with allocations lying very close to the intersection of the

offer curves in most economies. In all, 75% of economies generate allocations inside the bounds of

the RCE plotted in the Figure, with the exceptions occurring only in economies with fragile RCE.

100% of economies with robust RCE converge within the RCE allocation bounds plotted in the

Figure, providing additional support for Hypotheses 2.3 and 2.4.

Result 6. In accord with Hypothesis 2.3, allocations tend to converge to RCE-predicted allocations

in the Edgeworth Box, and universally converge in economies with robust RCE. Consistent with

Hypothesis 2.4, allocations converge more reliably in LxLy than HxHy economies.

5 Aggregation, Heterogeneity and Fragility

A striking conclusion from Section 4 is that, although replica economies built using individual pref-

erences are often pathological, that poor behavior disappears in each of the 12-subject aggregate

economies constructed in our experiment. This is true even in HxHy economies, designed delib-
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Figure 7: Empirical edgeworth boxes, plotting offer curves for the average subject of each type.

Panels are organized into columns by economy type and row by session (marked on the outside of the grid). Gray

rays mark the price grid, shaded wedges mark RCE price bounds and shaded gray rectangles RCE allocation bounds.

Red dashed rays mark final prices from Phase 2 markets and red X’s final allocations.
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Figure 8: Counterfactual excess demand functions, sampled from subject cohorts of N=1 (Replica), N=6

(Experiment-Sized) and all subjects in the dataset (Full Sample).

erately to feature strong wealth effects and therefore particular vulnerability to SMD pathologies.

The results thus provide a sort of empirical inversion of the Sonnenschein-Mantel-Debreu theorem:

SMD shows that nice preferences can generate pathological excess demands in the aggregate, but in

our data poorly behaved preferences (choices not rationalizable via neoclassical preferences) always

aggregate into nice excess demands and rather orderly market outcomes.17

In this section we document this inversion more formally and provide some insight into its

origins. We do so via a theoretically-motivated counterfactual exercise that constructs thousands

of counterfactual economies from our data, as follows. For each counterfactual economy we sample

with replacement N of the x-endowed sellers and N of the y-endowed buyers, and calculate average

aggregate excess demands (dividing the total by N to retain comparability). We focus on N = 1

(“Replica” economies) and N = 6 (“Experiment-Sized”, the size of the economies we study in

our experiment), and also simply aggregate our entire dataset into one excess demand function

(“Full Sample”). We plot a random sample of the resulting excess demand functions in Figure 8 to

illustrate.

The figure shows that excess demands in REPLICA samples are quite heterogeneous and often

quite poorly behaved. Conducting the exercise 10,000 times, we find that equilibria exist and are

unique in only 60% of these counterfactual economies, and of the equilibria that exist 36% are

17Bossaerts et al. [2007] finds complementary results using a very different research strategy for CAPM markets.
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unstable under classical tatonnement dynamics. Increasing the size of counterfactual economies

to 12 agents (EXPERIMENT-SIZED), raises this to 85%, with 16% of equilibria being unstable.

Finally, when we aggregate all of our subjects, excess demand is clearly monotonic, and equilibrium

is unique and stable.

This decrease in pathology as economies grow large is not due to the size of the economy per

se – after all, existence, multiplicity and instability would all be exactly the same if the REPLICA

economies consisted of a billion identical agents on each side. Rather, the decrease must be due

to preference heterogeneity. Indeed, the idea that heterogeneity might overcome SMD has a long

history in general equilibrium theory, stretching back informally to at least Becker [1962], followed

formally by Hildenbrand [1983] with respect to endowment heterogeneity, and Grandmont [1987,

1992], Hildenbrand [1994], Giraud and Quah [2003], and Hildenbrand and Kneip [2005], among

others, with respect to preference heterogeneity.

The size of the economy does, however, have direct effect on the robustness of equilibria. As

markets grow large, average excess demand tends to grow faster than the aggregated variance

of excess demand (due to a straightforward application of the Bienaymé formula on aggregation

uncorrelated individual preference noise). To see this, we repeat the sampling exercise above, this

time including and aggregating volatility in preferences to calculate robustness.18 We find that at

least one equilibrium is fragile in 70% of REPLICA samples, dropping to 40% for EXPERIMENT-

SIZE samples and 12% for very large N = 60 samples.

The set of economies that suffer from none of the SMD-type pathologies explored in the paper

(that is that have existence, uniqueness, stability and robustness) is a mere 22% in REPLICA

economies, 50% in EXPERIMENT-SIZED economies and 85% when N = 60. Calculating the

largest aggregate we can, the excess demand for our entire sample, FULL SAMPLE, has only one

equilibrium and it is robust.

Aggregation thus improves the predictive power of general equilibrium theory in two ways in

our data. First, preferences, though often quite non-neoclassical, are sufficiently heterogeneous to

create relatively monotonic excess demands, and increasingly so as the number of agents in the

economy increases. Second, excess demands, though noisy enough in small economies to frequently

disrupt dynamic convergence processes, become quite stable at a large aggregate scales for classical

statistical reasons. Jointly, our results thus suggest that departures from neoclassical models that

loom large at the individual level and in replica economies may show a tendency to yield quite

18For computational simplicity we conduct this exercise using standard deviation volatility bands.
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neoclassical outcomes in the aggregate.

Result 7. Pathologies — non-existence, instability, and multiplicity of equilibria — disappear as

markets grow large with the heterogeneous preferences measured in our experiment. Fragility also

disappears in larger economies due to attenuation of volatility.

6 Conclusion

We introduce new experimental methods for studying general equilibrium economies composed of

naturally occurring (rather than artificial, induced) preferences. In our experiment we illustrate

these methods by applying them to preferences for risk, an important sub-class of preferences.

Specifically, subjects reveal their preferences over a pair of Arrow securities, and we use these

preferences to sort subjects into different economies with a range of predicted properties. We

compare market outcomes in these economies to general equilibrium predictions generated from

participants’ revealed preferences. Doing so allows us to empirically study open questions in general

equilibrium theory that are impossible to study using prior methods.

What do we learn from this approach? First, although individual subjects’ revealed preferences

are quite prone to the types of pathologies highlighted by the Sonnenschein-Mantel-Debreu theorem

(multiplicity, non-existence, instability), preference heterogeneity across subjects has a powerful

taming effect on aggregate excess demand as markets get even moderately large. At the individual

level (and as in prior experimental work on revealed preferences), subjects reveal preferences that are

often non-neoclassical, and replica economies formed of pairs of subjects suffer SMD-like problems

(especially multiplicity and instability) almost half the time. These preferences are, however, highly

heterogeneous and aggregating only 12 subjects’ preferences produces excess demand functions that

are not far from monotone, with a unique (and stable) competitive equilibria in every economy in our

dataset. These empirical results reinforce the suggestion of some theorists, including Grandmont

[1987] and Hildenbrand [1994], that human preferences indeed may be heterogeneous enough to

overcome SMD-style concerns in the aggregate.

Second, general equilibrium theory, applied to revealed preferences, predicts behavior in our

markets quite well even though the preferences we study are not perfectly stable across decisions

and our markets are small. Simply by partitioning subjects into economies according to their

revealed preferences, we are able to influence the observed level of market prices in ways consistent

with GE comparative statics. Moreover, quantitative GE benchmarks predict final prices in most

markets and these benchmarks are especially good at predicting final allocations in our markets.
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Third, volatility in individual preferences has a predictable influence over the ability of market

dynamics to guide prices to equilibrium states. In economies with strong wealth effects, fluctua-

tions in individual preferences can be large relative to excess demands, halting (or even reversing)

convergence towards predicted equilibria. By measuring inconsistencies in individual choices in our

revealed preference task, we can pre-classify economies as “robust” (likely to converge) or “fragile”

to these fluctuations before ever observing subjects in markets. These classifications strongly pre-

dict convergence in our markets. What’s more, because we can deliberatively construct economies

with strong or weak wealth effects simply by sorting subjects into markets based on the convexity of

their revealed preferences, we can experimentally control the likelihood of robustness and thereby

the reliability of equilibrium convergence.

Our results illustrate some of the ways that studying economies built using real preferences

can enrich our understanding of competitive behavior, and they highlight connections between

markets and revealed preferences that are inaccessible to experiments using the usual sort of induced

preference procedures. To follow up, we see two important new empirical directions.

First, we have so far studied a particular class of preferences, those for risk. Do our largely

positive results on aggregation and convergence carry over to other sorts of preferences measurable

in the lab (e.g. time preferences)? We had expected homegrown risk preferences to provide a

particularly strong challenge to GE, given the frequent violations of neoclassical choice behavior in

prior experimental risk-elicitation research. This leads us to be conjecture similarly positive results

for GE economies constructed using other sorts preferences, but new empirical surprises surely are

possible.

Second, our experiment was conducted using a particular market institution with features par-

ticularly well-suited to the questions motivating our research. The tatonnement institution is im-

plemented using an interface very similar to our revealed preference task, and it is initially adapted

to a pre-specified price grid matching the grid used in the Phase 1 elicitation. Perhaps most im-

portantly, tatonnement allows trade only once, after prices have equilibrated; endowments remain

constant thoughout market exchange, allowing us to use elicited excess demands to make sharp

predictions about dynamics without imposing parametric assumptions on preferences. Studying

other, more naturalistic institutions such as the double auction (in which endowments change over

the course of the period) will require more elicitation or stronger structural assumptions, but will

also allow us to study richer questions about dynamics in settings in which the properties of excess

demand are changing over the course of market interaction.
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Marie-Esprit-Léon Walras. Elements of Pure Economics. Translated, Harvard University Press

(1954), 1877.

38



Arlington Williams, Vernon L. Smith, John Ledyard, and Steven Gjerstad. Concurrent trading in

two experimental markets with demand interdependence. Economic Theory, 16:511–528, 2000.

39



A Supplemental Online Appendix: Details on the Design

A.1 Preference Typing

Following Phase 1, the 28 subjects in the experiment are partitioned into three groups: H (12

subjects), L (12 subjects), and E (4 subjects). Subjects assigned to group E made the most

“erratic” choices in Phase 1R. Subjects assigned to group H reveal preferences in Phase 1R that

are “more-convex-than” subjects assigned to group L. The subjects in H comprise one market as

Phase 2 of the experiment commences, the subjects in L comprise another. Subjects in E are

assigned to a market, but their choices and endowments are ignored for the purpose of calculating

excess demand, and thus their decisions have no impact on prices. Subjects are not aware that they

have been partitioned into these groups, though they are aware there are two equal-sized markets

simultaneously in operation during Phase 2.

Subjects are sorted into groups on the basis of their 25 choices in Phase 1R. First, we sort these

choices by price, in ascending order. Let xi,t be the quantity of x chosen by subject i in Phase

1R at the tth-lowest price. Thus xi,1 is i’s choice at p = .2 (the lowest price), xi,2 is i’s choice at

p = .28 (the second-lowest price). And so on. We define yi,t similarly. Let ci,t ∈ R2
+ = (xi,t, yi,t)

be the portfolio chosen by i at the tth-lowest price.

Assignment of erratic subjects to group E.

Following Phase 1, we create three 24 × 1 vectors for each subject: di,x, di,y, and di. Let

di,x(t) = xi,t+1 − xi,t, diy(t) = yi,t+1 − yi,t, and di,t = ‖ci,t+1, ci,t‖, for t ∈ { 1, 2, . . . , 24}. Then, for

each subject i we create a “noise” variable Ni where

Ni =

23∑
t=1

ηtdi,t

where η is an indicator variable equal to 1 if sign (di,x(t+ 1)) 6= sign (di,x(t)) or sign (di,y(t+ 1)) 6=

sign (di,y(t)). The two subjects of each endowment type with the largest value of Ni were assigned

to group E.

Thus Ni is the length of the subject’s linearly interpolated offer curve, but only including

the line segments in which there is a sign change in one of the two goods quantities. A subject

viewing the goods as perfect complements would generate Ni = 0. The maximum value of Ni for

a subject who views the goods as perfect substitutes is roughly 146 for a subject with the corner

X endowment (note that the subject’s choice would be unrestricted for p = 1), and about 104 for

a subject with the corner Y endowment. All symmetric, smooth, concave utility functions that we
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simulated produce Ni within these bounds. Disappointment aversion simulations produced slightly

larger values than the perfect substitutes benchmark (by about 5-10%).

Subjects in the experiment assigned to group E have mean values of Ni equal to 673 and 522

for corner X and Y endowments, respectively (the medians were similar). By way of comparison,

subjects assigned to H or L have mean values of Ni equal to 302 and 196 for corner X and Y

endowments, respectively. Visual inspection of subject offer curves confirm unambiguously erratic

choices for all subjects placed in E. Two subjects from E (one from each endowment type) are

placed in each market during Phase 2, but their demands do not impact price changes.

Assignment of subjects to groups H and L. When p = .76, subjects with opposite en-

dowment types ((100, 0) and (0, 76)) face an identical budget line. We define a non-parametric

measure of convexity in the neighborhood of this budget line to sort subjects into groups H and

L. Specifically, we compute Six = xi,8 + xi,9 + xi,10 for each subject i at price gridpoints 8, 9, and

10 (prices 0.7, 0.76, and 0.83, respectively). We include these neighboring prices to smooth the

measure, but we chose not to smooth across a wide range of prices because disappointment-averse

subjects can change from viewing the goods as perfect complements to perfect substitutes in one

grid point; thus Six is a local non-parametric measure of convexity near the price of 0.76.

Regardless of endowment, Six is monotonically decreasing in i’s convexity of preferences by

Proposition 2 . Of the 24 subjects not already assigned to group E, there are 12 with a corner X

endowment (we refer to them as “Sellers”) and 12 with corner Y endowment (to whom we refer as

“Buyers”). We place the six sellers and six buyers with the lowest values of Six in group H. The

remaining twelve unassigned subjects are assigned to group L.

A.2 Tatonnement Algorithm

Our algorithm is designed to implement large price changes in early rounds of the period, and for

the magnitude of price changes to be reduced by a factor of one half after each successive sign

change of Z.

Let M be the number of subjects in a given market (M = 12 throughout our experiment). Let

Zt =
∑M

i=1 xi,t − 100(M/2) be realized aggregate excess demand given choices xi,t of security X in

round t. Let zt = Zt/M be per capita excess demand in round t. Let K =(.1745, .08725, .043625,

.021813, .010906) be a scaling vector we use to reduce the magnitude of price changes after sign

changes in Zt. We refer to element n of K as K(n). Let pt be the price at the beginning of round

t. Let z̄ be expected per capita excess demand in the first round of the market at the exogenous
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price; we set z̄ = 13.5.

As previously noted, p1 = 1.57. Let k1 = 1
z̄K(1), and for t ≥ 1 let kt+1 = kt if sign (Zt+1 ∗ Zt) = 1,

otherwise kt+1 = 1
z̄K(1 + r), where r is the minimum of 4 and the number of times the sign of

excess demand has changed in the current period, including the current round.

Let At = ktzt. Let Bt = (.26175) sign (zt). Let Ct = sign (zt) min{ |At| , |Bt|}. Bt serves to

guarantee that price changes are capped at a maximum of .26175 radians (about 15 degrees),

so that prices don’t swing too wildly in the face of large excess demand. If Ct < 0, let Dt =

max{ arctan (pt) + Ct, .01} (this guarantees that price is always greater than .01). Otherwise, if

Ct > 0, then Dt = min{ arctan (pt) + Ct, 1.5608} (which guarantees price is always less than 100).

The bounds reflected by Dt are never close to binding in our experimental markets.

Finally, let ρt+1 = tan (Dt), and let ρ̂t+1 equal ρt+1 rounded to the price grid point used in the

individual choice experiment. If ρ̂t+1 = pt, then ps+1 = ρs+1 for all s ≥ t (that is, if rounding price

to the nearest gridpoint would cause a repeat of pt in period t + 1, then beginning in t + 1 prices

are no longer rounded to the nearest gridpoint). Otherwise, pt+1 = ρ̂t+1. Rounding to the nearest

gridpoint in early rounds of the period facilitate a tighter comparison to choices in Phase 1 of the

experiment.

If ‖zt‖ < 2 for three consecutive rounds t, t + 1, and t + 2, then pt+2 is the market price in

the current period, and each subject’s portfolio choice (xi,t+2, yi,t+2) is the final allocation for the

period. Note we implicitly assume that our tatonnement mechanism is a market maker who can

absorb small excess demand imbalances. Our software also provides an alternative rationing option,

but we did not use it in this experiment. If the convergence criterion on ‖zt‖ is not met through

25 rounds, then p25 is the market price for the current period, and each subject’s portfolio choice

(xi,25, yi,25) is the final allocation for the period.
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B Supplemental Online Appendix: Theoretical Notes

Recall that a preference relation � is a complete, reflexive and transitive binary relation. For

convenience we shall also assume continuity, which (together with monotonicity) is well known to

ensure representation by a continuous utility function. Recall also that preferences are convex if

every upper contour set (all points �-preferred to a given point) is convex.

A preference relation � over R2
+ is monotone if (x, y) ≥ (x′, y′) ∈ R2

+ =⇒ (x, y) � (x′, y′) and

it is symmetric if (x, y) ∼ (y, x) ∀(x, y) ∈ R2
+. We say that an agent in our economy is minimally

rational if she has preferences over R2
+ that are continuous, monotone and symmetric.

The budget set B(p, ω) for given price p > 0 and endowment (ωx, ωy) 6= (0, 0) ∈ R2
+ consists

of all bundles (x, y) ∈ R2
+ such that y + px ≤ ωy + pωx. For given preferences � over R2

+, a

bundle (x∗, y∗) is demanded at price p > 0 and endowment ω if (x∗, y∗) ∈ B(p, ω) and (x∗, y∗) �

(x, y) ∀(x, y) ∈ B(p, ω).

Proposition 1. Let a minimally rational agent demand (x∗, y∗) ∈ B(p, ω) given price p > 0 and

endowment ω ∈ R2
+. Then (1 − p)(x∗ − y∗) ≥ 0. The inequality is strict if preferences are strictly

monotone and p 6= 1.

Proof. Since preferences are monotone and continuous, they are represented by a continuous utility

function U(x, y). The budget set is compact, so U is maximized somewhere on B(p, ω), i.e.,

demand (x∗, y∗) exists. To prove the result, take a point (x, y) ∈ B(p, ω) where the inequality fails,

so (1− p)(x− y) < 0. It suffices to find a point in B(p, ω) that is strictly preferred to (x, y).

Suppose that p < 1 and x < y for choice (x, y) ∈ B(p, ω). Consider bundle (y, x), for which

U(x, y) = U(y, x) by symmetry. Bundle (y, x) is cheaper than (x, y), since px + y − (py + x) =

(1− p)(y − x) > 0. By strict monotonicity of preferences, bundle (y, x+ (1− p)(y − x)) ∈ B(p, ω)

is preferred to (x, y). Similarly, when p > 1, any affordable choice (x, y) with x > y is strictly less

preferred than a range of affordable choices including (y, x+ (p− 1)(x− y)). �

When (x, y) is a bundle of complementary equi-probable Arrow securities (i.e, the only states

are X and Y, and each occurs with probability 0.5), it is a straightforward to show directly from the

definitions that the condition (1−p)(x−y) < 0 implies that (x, y) is strictly first-order stochastically

dominated by other affordable allocations, e.g., by (y, x+ (1− p)(y − x)) when p < 1 and x < y.

Suppose that u : R → R is a Bernoulli function, i.e., it is strictly increasing and continuous.

In the case of equi-probable Arrow securities, let U(x, y) be its expected value, i.e., U(x, y) =
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0.5[u(x)+u(y)]. Then it is straightforward to show that U is monotone, symmetric and continuous,

so Proposition 1 applies. Thus Proposition 1 generalizes the well known result that expected utility

maximizers do not choose lotteries that are first-order stochastically dominated.

Disappointment aversion Gul [1991] in the present context implies choice on the diagonal x = y

for all prices in some neighborhood of p = 1. The underlying preferences are continuous, monotone,

symmetric and convex, but not smooth at the diagonal and not representable as the expectation

of a Bernoulli function.

Recall that the marginal rate of substitution (MRS) for given preferences at a bundle (x, y) is

the (negative) slope of its indifference curve through that point, i.e., MRSU = − dy
dx |U=const where

U(x, y) represents the given preferences. MRS is not defined at kinks but it is not very restrictive

to assume, as we do below, that it is defined almost everywhere (a.e.), e.g., everywhere except along

the diagonal for Disappointment Averse preferences. We will say that a demand (x∗, y∗) ∈ B(p, ω)

is interior if x∗y∗ > 0 and MRS(x∗, y∗) is defined. The following partial ordering on the space of

preferences will be useful.

Definition 1. The preferences that V (x, y) represent on R2
+ are more convex than those that

U(x, y) represent if

1. U and V both represent continuous, monotone, symmetric and convex preferences with MRSU

and MRSV defined a.e., and

2. (x− y)(MRSU (x, y)−MRSV (x, y)) ≥ 0 ∀(x, y) ∈ R2
+ for which the left hand side is defined.

Proposition 2. For given prices p > 0 and endowment ω ∈ R2
+, let (x∗U , y

∗
U ), (x∗V , y

∗
V ) ∈ B(p, ω)

be demands for two different minimally rational agents whose preferences represented by utility

functions U(x, y) and V (x, y) respectively, with V more convex than U . Then (1−p)(x∗U −x∗V ) ≥ 0.

If p 6= 1, both optima are interior and the more-convex-than ordering is strict, then the inequality

is strict.

Proof. Note that (x∗U , y
∗
U ), (x∗V , y

∗
V ) are unique, since preferences are strictly convex and the budget

set is convex. Standard arguments from intermediate microeconomics now ensure that, if interior,

the demands are characterized by p = MRSU (x∗U , y
∗
U ) = MRSV (x∗V , y

∗
V ).

First consider the case p < 1, strict ordering, and interior demands. Then x∗U > y∗U by

Proposition 1, and p < MRSV (x∗U , y
∗
U ) since V -preferences are strictly more convex than the

U -preferences. Now strict convexity implies that MRSV decreases as we move along the bud-

get line {(x, y) : y + px = ωy + pωx} from (x∗U , y
∗
U ) towards the diagonal point (

ωy+pωx
1+p ,

ωy+pωx
1+p ).
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Figure 9: Demand and Convexity. Panel A: For p < 1, Proposition 1 implies that demand must be on

the line segment L; the portion of the budget line above the diagonal is dominated. Panel B: Preferences

represented by V are more convex than those represented by U . If it has a kink on the diagonal x = y then

V represents disappointment averse preferences, which are not the expected value of any Bernoulli function.
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Proposition 1 implies that x∗V ≥
ωy+pωx

1+p , so we conclude that x∗V ∈ [
ωy+pωx

1+p , x∗U ). Thus the desired

inequality (1−p)(x∗U −x∗U ) > 0 holds in this case. The argument for the interior case when p > 1 is

similar. The weak inequality can be established in non-interior cases by taking appropriate limits.

�

Recall that u : R → R is a Bernoulli function if it is strictly increasing and continuous, and

that Bernoulli function v is more concave than u if v(c) = h(u(c)) ∀c ≥ 0 where h is a positive

increasing concave function.

Lemma 1. Let U(x, y) = 0.5(u(x) + u(y)) and V (x, y) = 0.5(v(x) + v(y)) be expected utility for

differentiable concave Bernoulli functions u, v where v is more concave than u. Then V represents

more convex preferences than U .

Proof. Condition 1 in the more-convex-than definition holds because, as expected values (with equi-

probable states) of Bernoulli functions, U and V automatically represent continuous, monotone,

symmetric and convex preferences on R2
+. Since the Bernoulli functions are differentiable, the

MRS’s are defined everywhere on R2
+, with MRSU (x, y) = − dy

dx |U=const = ∂U
∂x /

∂U
∂y = u′(x)

u′(y) . Similarly,

MRSV (x, y) = v′(x)
v′(y) . By definition, v more concave than u means that v(c) = h(u(c)) for some

concave funtion h, which we can assume to be differentiable. Since v′(c) = h′(u(c))u′(c), we have

MRSV (x, y) = h′(u(x))
h′(u(y))MRSU (x, y). Thus MRSV (x, y) ≤ MRSU (x, y) ⇐⇒ h′(u(x))

h′(u(y)) ≤ 1 ⇐⇒

x ≥ y, since h is concave and u is increasing. Condition 2 follows directly. �

Corollary 1. If v is more concave than u, then on any budget line with p 6= 1, an expected v-

maximizer will demand an allocation closer to the diagonal x = y than will an expected u-maximizer.

Proof. By Lemma 1, an expected v-maximizer’s preferences on R2
+ represented by V are more convex

than an expected u-maximizer’s preferences represented by U . Proposition 1 tells us that both

demands fall on the same side of the diagonal, and Proposition 2 tells us that (1−p)(x∗U −x∗V ) ≥ 0.

The conclusion follows directly. �

Revealed Competitive Equilibrium (RCE). Let E ∈ {LxLy, HxHy, HxLy, LxHy}, or more

generally let E be any Edgeworth box economy, that is, an economy with a finite set of agents

HE who each have a fixed endowment ωh = (ωhx , ω
h
y ) in R2

+ and preferences represented by a

continuous monotone symmetric utility function Uh(x, y). Suppose that we observe all agents’

choices (xh(pi), y
h(pi)) on budget lines defined by those endowments and a fixed price grid p0 ≤

p1 ≤ ... ≤ pn. To avoid trivialities, assume that pi = 1 for some i with 0 < i < n. Let ZR(pi) =∑
h∈H z

h(pi) ≡
∑

h∈H x
h(pi)− ωhx be revealed aggregate excess demand.
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Definition 2. A RCE is a price interval [pi, pi+1] spanning adjacent grid prices such that

ZR(pi)Z
R(pi+1) < 0. If ZR(pi) = 0 at some grid point pi then [pi, pi] is also a RCE.

For two endowment types S and D (that is, for each h ∈ E , either ωh = ωS or ωh = ωD), we

predict that the allocation corresponding to an RCE price interval [pi, pi+1] will lie in a particular

rectangle [x̌, x̄]× [y̌, ȳ] in the usual Edgeworth box diagram. The corners are defined by

w̌ = min{Sw(pi), Sw(pi+1), Dw(pi), Dw(pi+1)} and

w̄ = max{Sw(pi), Sw(pi+1), Dw(pi), Dw(pi+1)}, for w = x, y, where in turn

S(p) = (Sx(p), Sy(p)) =
∑

h∈E ω
h −

∑
h∈S

(
x̂h(p), ŷh(p)

)
and

D(p) = (Dx(p), Dy(p)) =
∑

h∈D
(
x̂h(p), ŷh(p)

)
are the total allocations chosen at price p by the set

of traders with endowment type S (from the perspective of type D’s origin), and by the comple-

mentary set of traders with endowment type D.

Definition 3. Edgeworth box economy A is more convex than Edgeworth box economy B if there

is a bijection ρ : HA → HB such that for all h ∈ HA

1. ωh = ωρ(h), and

2. Uh is more convex than Uρ(h).

That is, we can pair up agents with the same endowments across economies, in such a way that

each agent in A has more convex preferences than his counterpart in economy B. If our empirical

convexity measure Sx captures the “more convex than” ordering of individual preferences, then

any 1:1 mapping ρ between agents in Hx and Lx and between agents in Hy and Ly will satisfy

the definition just given, and allow us to conclude that the HxHy economy is more convex than the

LxLy economy.

Proposition 3. Suppose that Edgeworth box economy A is more convex than Edgeworth box econ-

omy B, and aggregate x endowment is greater than aggregate y endowment in each economy. Then

min{p ∈ RCE(A)} ≤ min{p ∈ RCE(B)} and max{p ∈ RCE(A)} ≤ max{p ∈ RCE(B)} ≤ 1.

Proof. ZA(p) =
∑

h∈HA z
h(p) ≡

∑
h∈HA [xh(p)− ωhx ] is excess demand in economy A. Applying the

bijection ρ and Definition 3 part 1 we see that
∑

h∈HB ω
h
x =

∑
h∈HA ω

ρ(h)
x =

∑
h∈HA ω

h
x , so aggregate

endowments are the same in both economies. By hypothesis, in each economy ωY ≡
∑

h∈HA ω
h
y <∑

h∈HA ω
h
x ≡ ωX . Writing aggregate demand as X(p) =

∑
h∈HA x

h(p) and Y (p) =
∑

h∈HA y
h(p),

we see (by summing the budget constraints) that

Y (p) + pX(p) = ωY + pωX . (2)

47



-1
00

-5
0

0
50

10
0

p

Z

pv
p̂

ZA ZB

1

Figure 10: Excess demands for two economies. Economy A is more convex than economy B, and

therefore ZA(p) ≤ ZB(p) ∀p ≤ 1.

Suppose that p > 1. Then applying Proposition 1 and summing yields Y (p) > X(p), so the left

hand side of equation (2) exceeds (1 + p)X(p). We already noted that ωY < ωX by hypothesis, so

the right hand side of equation (2) is strictly less than (1+p)ωX . Therefore X(p) < ωX so Z(p) < 0

for any p > 1. This proves the last inequality of the Proposition, that no RCE price exceeds 1.0 in

either economy.

Now suppose that p ≤ 1. Again applying Proposition 1 and summing yields Yk(p) ≤ Xk(p) for

each economy k = A,B. Applying Definition 3 part 2 and Proposition 2, and then summing, tells

us that XA(p) ≤ XB(p). (That is, when p ≤ 1, both aggregate demands are below the diagonal,

but demand in the more convex economy is closer to the diagonal.) Since aggregate endowment

is the same in both economies, we see that excess demand satisfies ZA(p) ≤ ZB(p) ∀p ≥ 1. Let

p̂ = max{p ∈ RCE(B)}. Recalling that Z is continuous and is negative for p > 1, we see that

p ≥ p̂ =⇒ ZB(p) < 0 and a fortiori =⇒ ZA(p) < 0. Thus all roots of ZA are indeed bounded

above by p̂.

It remains only to prove that min{p ∈ RCE(A)} ≤ min{p ∈ RCE(B)}. This follows from a

parallel argument for p̌ = min{p ∈ RCE(A)}, recalling that, by monotonicity, Z is positive for all

p < p̌. �

48



Figure 10 illustrates why the “natural” ordering of RCE applies to the largest and smallest

equilibrium prices (generically index +1), but not to all multiple equilibria, which can include

upcrossings (index -1).

We shall say that an economy E is nice if its excess demand function ZR

(1) has a unique RCE tunnel [pi, pi+1], and

(2a) either ZR(pi) > 0 > ZR(pi+1) or

(2b) ZR(pi) = 0 and ZR(pi−1) > 0 > ZR(pi+1).

That is, E is nice if (1) an RCE exists and it is unique, and (2) it is tatonnement-stable. Following

the SMD literature, we shall say that the economy is pathological if it is not nice, i.e., if it has

non-existent RCE or non-unique RCE or unstable RCE.

In defining the classification formally, we must deal with the possibility that the economy is

pathological, and that there are multiple RCE. For a particular RCE [pi, pi+1], letN(i) ⊂ {p0, ..., pn}

be the subset of grid prices (excluding pi and pi+1) that are closer to the given RCE tunnel than to

any other RCE; if the given RCE is unique, then N(i) is the entire price grid other than pi, pi+1.

Given the empirical value σR > 0 of a volatility measure, we shall say that the given RCE is fragile

if, for any j ∈ N(i), we have (Z(pj)−σR)(Z(pj) +σR) < 0. That is, for some grid price outside the

price tunnel, volatility can change the sign of excess demand, in which case tatonnement dynamics

may converge to some non-RCE price. Otherwise, we classify the RCE as robust.
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C Supplemental Online Appendix: Revealed Preferences

In this section we provide a plot, for each session, of all subjects’ revealed preferences from Phase

1R of the experiment. Each panel plots the log price on the x-axis and the corresponding share of

x, x/(x+ y) chosen by the subject at that price. Vertical lines mark a price of 1 (log(p) = 0) and

horizontal lines an equal share x/(x+ y) = 0.5. The preference classification made by the software

for the subject (“H”, “L” or “E”) and the endowment type assigned to the subject (“x” or “y”)

are shown in the left margin in each case.
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Figure 11: Phase 1R choices for all subjects in session 1.
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Figure 12: Phase 1R choices for all subjects in session 2.
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Figure 13: Phase 1R choices for all subjects in session 3.
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Figure 14: Phase 1R choices for all subjects in session 4.
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D Supplemental Appendix: Instructions to Subjects

The following, first part of the instructions were handed out at the very beginning of the experiment.

Instructions

This is an experiment in decision-making funded by the National Science Foundation. Your payment

will depend partly on your decisions and partly on chance. Please pay careful attention to the

instructions; you are likely to make more money if you understand them completely.

The entire experiment should be completed within an hour and a half. At the end of the experiment

you will be paid privately, in cash. You will receive $7 as a participation fee (simply for showing

up on time and participating), plus an additional amount that depends on your decisions in the

experiment, as explained below.

During the experiment we will speak in terms of experimental tokens instead of dollars. Your

payment will be calculated in terms of tokens and then translated at the end of the experiment

into dollars at the following rate: 3 Tokens = 1 Dollar

Experiment Outline

This experiment will consist of two separate phases: Phase 1 and Phase 2. In these instructions we

will explain Phase 1, and when Phase 1 is complete we will hand out instructions concerning Phase

2. After both phases are complete, we will randomly select one of your decisions to determine your

cash payment for the experiment. Which decision will be determined by the draw of a ball from a

bingo cage filled with numbered balls.

Phase 1: Independent decision problems

In Phase 1 you will face a sequence of periods and make one choice in each. You will begin each

period with an endowment: some quantity of tokens in each of two separate accounts, Heads and

Tails. Your decision in each period will be whether to keep your endowment or select an alternative

allocation of tokens into these accounts. Your endowment will be the same in each period of Phase

1.

Your computer screen will show your endowment as a dot on a simple, 2-dimensional graph with the

number of units in your Heads account shown on the horizontal (x) axis and your Tails account on

the vertical (y) axis. You are welcome to keep your endowment allocation by pressing the “Confirm

Selection” button. However, the screen will also show you a line (called the budget line) containing
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Instructions Figure 1:

Instructions Figure 2:

a range of other available allocation choices. Simply by left-clicking anywhere on the line, you can

select a new allocation: after clicking you will see a blue dot appear, showing your new selection.

When you are satisfied with your choice, you must press the “Confirm Selection” button, making

the selection your official allocation choice for the period. You will have up to two minutes to make

each decision (time remaining will be displayed at the top of your screen); if you have not confirmed

your selection by the time the counter reaches zero, your current selection will be automatically

selected.

Examples of budget lines you may face appear in Figures 1 and 2. In Figure 1, the endowment is

100 tokens in the Heads account and 0 tokens in the Tails account. In Figure 2, the endowment

is 0 tokens in the Heads account and 76 tokens in the Tails account. When all participants have

confirmed their selections, a new period will begin with a new budget line (but the same endow-

ment). For example, as illustrated in Figure 3, choice A represents a decision to allocate 78 tokens

in the Heads account and 14 tokens in the Tails account. Another possible allocation is B, in which

you allocate 33 tokens in the Heads account and 42 tokens in the Tails account. Notice that your
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Instructions Figure 3:

Figure 3

Instructions Figure 4:
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endowment is always an available choice.

After all participants have submitted their decisions, you will move on to the next decision problem.

The actual computer program dialog window is shown in Figure 4.

If one of the periods in Phase 1 is (randomly) selected to determine your payment for the experiment,

the amount of cash you earn will be determined by the number of tokens in your Heads and Tails

accounts for that period. Specifically, we will flip a coin: if it comes up heads, you will receive

the number of tokens in your Heads account, and if it comes up tails, you will receive the number

of tokens in your Tails account (this is why “(Probability: 0.5)” appears beside Heads and Tails

in Figure 4 and on your screen). Thus, in the end you will either receive tokens from your Heads

account or from your Tails account, but not both.

For example, if the period shown in Figure 4 was randomly selected to determine your payment,

you would have a 50% chance of receiving 33.00 tokens and a 50% chance of receiving 47.95 tokens.

Recall that tokens convert to dollars at a rate of 3 tokens to 1 dollar. After all participants have

completed 5 practice problems and all of the “official” decision problems in Phase 1, we will tell

you that Phase 1 has ended and provide instructions for Phase 2. When both phases are completed

we will determine payments for the experiment.

Privacy Policy

Your participation in the experiment and any information about your payoffs will be kept strictly

confidential. Your payment-receipt and participant consent form are the only places in which your

name is recorded. In order to keep your decisions private, please do not reveal your choices to

any other participant. Please do not talk with anyone during the experiment, please turn off any

phones or other electronic devices, and please refrain from using headphones or earbuds during

the experiment. We ask everyone to remain silent until the end of the last round. If there are no

further questions, you are ready to start.

The following, second part of the instructions were handed out after the conclusion of Phase 1.

Phase 2: Market decision problems

In each period of Phase 2 you will you will begin with the same endowment of tokens as in Phase

1, and you will make decisions by clicking on budget lines running through your endowment point,

just as in Phase 1. However, unlike Phase 1, you will make several budget line decisions in each

period, and the budget lines you face will be a consequence of the interaction of participant choices
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in a market. Here is how it works.

1. At the beginning of the period you will be placed into one of two markets with other partic-

ipants. Participants in the experiment will be equally divided between the two markets. In

each market some participants will have an endowment of tokens only in their Heads account,

others only in their Tails account. This endowment of tokens will match each individual’s

endowment in Phase 1. As in Phase 1, you will have the opportunity to keep your endowment

or express a preference to trade it for an alternative allocation by choosing a point on your

budget line. However, for each decision the slope (that is, the steepness) of the budget line

will always be identical for everyone in your market. This means that the number of tokens

in your Tails account that you must give up in order to receive an additional token in your

Heads account (or the number of tokens you can receive in your Tails account for each token

you are willing to give up in your Heads account) is the same for everyone in the room. Let’s

call the number of Tails tokens you can give/receive per Heads token on the current budget

line, the price of Heads.

2. As in Phase 1, you can choose to either keep your endowment or click on a new preferred

point on the budget line and click “Confirm Selection.” Unlike Phase 1, this choice is not

“final.” Instead, this choice is your demand for Heads and Tails tokens at the current price.

3. The computer will add up all of the demands for Heads and Tails tokens and add up all

of the endowments of Heads and Tails tokens across all of the participants in your market.

If the summed demands for Heads is significantly greater than the summed endowments of

Heads (that is, if participants in your market request more Heads tokens than are available

in the market), the computer will increase the price of Heads (that is, it will make the budget

line steeper) and let everyone choose again. If instead the summed demands for Heads is

significantly smaller than the total endowments of Heads, the computer will instead decrease

the price of Heads (that is it will make the budget line flatter) and let everyone choose again.

In either case, your endowment will not change when facing your new choice.

4. If the summed demands for Heads and Tails are “close enough” to the summed endowments,

the computer will end the period and whatever your last choice was in the period will be your

final allocation for the period (the computer may also end the period if it lasts too long).

Thus, each decision you make may be your final choice for the period, depending on the

choices of everyone else in the market. Since there will be many participants in your market,

your choice will generally represent a relatively small fraction of total demand, and thus will
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have a negligible impact on the price.

After the period ends we will have one additional period, with participants potentially reassigned

between the two markets. Then Phase 2 will be complete. Afterward, each participant will draw

a ball from a bingo cage with balls numbered 1-100. If the ball comes up between 1 and 50, you

will be paid for the corresponding decision in Phase 1 (recall you made 50 non-practice decisions in

Phase 1). If the number on the ball is between 51 and 75, you will be paid for the final allocation

in the first period of Phase 2, and if the number on the ball is between 76 and 100, you will be paid

for the final allocation in the second period of Phase 2. Thus there is a 50% chance your payment

will be determined by Phase 1 and a 50% chance your payment will be determined by Phase 2,

where each of the two periods in Phase 2 has an equal chance of being the payment period.
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